
Hans-Petter Halvorsen

https://www.halvorsen.blog

Week Assignment
Project Management & Requirements Analysis

1. Create Software Requirements &
Design (SRS/SDD->SRD) Document(s)

2. Create/Update Project Plan/Gantt
Chart

3. Start/Cont. using Azure DevOps
4. Start Coding/Implementation

Week Assignment

Textbooks (Topics this Week)
Software Engineering, Ian Sommerville

Ch.4: Requirements Engineering

Ch.22: Project Management

Video: An Introduction to Requirements
Engineering

https://youtu.be/Ec0s0z5uXQ8

https://youtu.be/Ec0s0z5uXQ8

Hans-Petter Halvorsen

https://www.halvorsen.blog

Project Management &
Requirements Analysis

Table of Contents

Requirements
Analysis

Design

Implementation

Testing

Maintenance

Planning
Deployment

SRS

SDD

STD

Code

Installation
Guides

User Guides

Gantt Chart

with ER Diagram, UML Diagrams, CAD Drawings

Test
Documentation

Software Requirements
Specifications

Software Design Documents
System Documentation

Test Plan

Project Planning

End-User
Documentation

System
Documentation

Software Test Documentation

SDP
Software Development

Plan

Gantt Chart

The Software
Development

Lifecycle
(SDLC)

Requirements Engineering

What is Requirements Engineering?

User
World

Software
System

Requirements

Requirements is the bridge between the real world and the software system

An Introduction to Requirements Engineering: https://youtu.be/Ec0s0z5uXQ8

https://youtu.be/Ec0s0z5uXQ8

Requirements Engineering

Kravanalyse Kravspesifikasjon

Analysere HVA systemet skal gjøre
Formalisere det i et skriftlig
dokument (Software
Requirements Specifications,
SRS)
Dette blir en slags kontrakt
mellom kunde og utvikler

Requirements Analysis Requirements Specifications

Iterations

Feedback

World's Funniest Engineering Fails Ever:
https://www.youtube.com/watch?v=MUF1tMlnSJw

Requirements Engineering

– Det er enkelt å glemme å spesifisere at bilen
skal ha bremser.

Når kunder spesifiserer hva de skal ha, blir
enkelte ting tatt for gitt.

Hvordan sikrer du at de får kvaliteten de
forventer?

Requirements Engineering

What the Customer got

What the Customer really needed

I’ll go up and find out
what they need and the
rest of you start coding!

Reality?

You dont make good software using this approach!
Still, with Agile we start to implement code even if we dont have all the details at hand.

17

Take the Requirements Analysis seriously !!

Why spend time on
Requirements Analysis?

Requirements

Design

Implementation

Testin
g

Deployment

Software Development Life Cycle (SDLC)

Cost per defects and changes

Hans-Petter Halvorsen

https://www.halvorsen.blog

Software Requirements
& Design

Table of Contents

See Next Slides for more details...

Software Requirements & Design
• Based on the Project Specifications and the

Brainstorming session, create High-Level and Detailed
Requirements for your Software

• Create Software Requirements Specifications
(SRS)/Software Design Documents (SDD) -> Software
Requirements and Design Document (SRD)

Note! We will add even more details the upcoming
weeks, i.e., Database design, UML modelling, such as
Class diagrams, etc.)

Requirements Engineering

Kravanalyse Kravspesifikasjon

Analysere HVA systemet skal gjøre
Formalisere det i et skriftlig
dokument (Software
Requirements Specifications,
SRS)
Dette blir en slags kontrakt
mellom kunde og utvikler

Requirements Analysis Requirements Specifications

Iterations

Feedback

Software Requirements & Design
Requirements (WHAT):
• WHAT the system should do
• Describes what the system should do with Words and Figures,etc.
• SRS – Software Requirements Specification Document

Software Design (HOW):
• HOW it should do it
• Examples: GUI Design, UML, ER diagram, CAD, etc.
• SDD – Software Design Document

Note! Many don't separate SRS and SDD documents, but include everything in a
Requirements & Design Document (SRD document).
In practice, requirements and design are inseparable.

Typical Software Documentation

High-Level
Requirements and
Design Documents

User Manuals

System
Documentation

Installation Guides

Test Plans

Test Documentation

Detailed
Requirements and
Design Documents

ER Diagram (Database)
UML Diagrams (Code)

Ti
m

e
Start

Finish

How to Test/
What is Tested

CAD Drawings, etc.

1. Planning

2. Testing

3. End-user
Documentation
(The people that
shall actually use
the software)

Technical Stuff

How to use it

How to install it

Proof that you have tested and that the
software works as expected

(The stakeholders, the
software team; architects,
UX designers, developers)

(QA people)

(Super User/ IT dep.)

WHAT
HOW

(End User)Pr
oj

ec
t M

an
ag

em
en

t (
Ga

nt
t C

ha
rt

, e
tc

.)

(SRS)
(SDD)

(STP)
(STD)

Software
Development Plan (SDP)

2.Requierements
/Design

(->SRD)

SRS/SDD
Document(s)

Database
Diagram(s)

UML
Diagrams

Written High-Level
Requirements

System
Sketches, Flow

Charts, etc.

CAD Drawings

Diagrams as Figures
+ Descriptions of each

Diagrams as Figures
+ Overall Descriptions and
descriptions for each table

Diagrams as Figures
+ Descriptions of each

Design Sketches
-both System Arcitecture

and GUI mockups

Use Case Document?

etc.

etc.

Useful when your project involves hardware

Requirements Analysis

SRS/SDD
Document(s)

Database
Diagram(s)

UML
Diagrams

Written High-Level
Requirements

System
Sketches, Flow

Charts, etc.

CAD Drawings

Diagrams as Figures
+ Descriptions of each

Diagrams as Figures
+ Overall Descriptions and
descriptions for each table

Diagrams as Figures
+ Descriptions of each

Design Sketches
-both System Architecture

and GUI mockups

Use Case Document?

etc.

etc.

Useful when your project involves hardware

Requirements Analysis
This W

eek

Next 2 Week
Assignments

The Structure of the SRS Document

29

Chapter Description

Preface This should define the expected readership of the document and describe its version history, including a rationale for the creation of a new version and a summary of the
changes made in each version. Les: Forord: Kort om bakgrunn for dokumentet, takke personer som har bidratt, oversikt over eventuelle endringer, osv.

Introduction This should describe the need for the system. It should briefly describe the system’s functions and explain how it will work with other systems. It should also describe how
the system fits into the overall business or strategic objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should not make assumptions about the experience or expertise of the reader.

User requirements definition Here, you describe the services provided for the user. The nonfunctional system requirements should also be described in this section. This description may use natural
language, diagrams, or other notations that are understandable to customers. Product and process standards that must be followed should be specified.

System architecture This chapter should present a high-level overview of the anticipated system architecture, showing the distribution of functions across system modules. Architectural
components that are reused should be highlighted.

System requirements specification This should describe the functional and nonfunctional requirements in more detail. If necessary, further detail may also be added to the nonfunctional requirements.
Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships between the system components and the system and its environment. Examples of possible
models are object models, data-flow models, or semantic data models.

System evolution This should describe the fundamental assumptions on which the system is based, and any anticipated changes due to hardware evolution, changing user needs, and so
on. This section is useful for system designers as it may help them avoid design decisions that would constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the application being developed; for example, hardware and database descriptions. Hardware
requirements define the minimal and optimal configurations for the system. Database requirements define the logical organization of the data used by the system and the
relationships between data.

Index Several indexes to the document may be included. As well as a normal alphabetic index, there may be an index of diagrams, an index of functions, and so on.

I. Sommerville, Software Engineering: Pearson, 2015.

Example 1

Ch. 4: Requirements Engineering

Dette eksemplet er basert på IEEE sin standard om
”requirements documents” og er litt omstendelig og

bruker litt innfløkt språk, m.m.
Mer detaljer om denne finnes i Kap.4 og i referanselista

til Sommerville-boka.
En slikt omstendelig standard brukes i mer formelle og

omstendelige statlige prosjekter, m.m.
Jeg anbefaler en lettere variant ifm. vårt prosjekt, se

eksempel 2 og 3 på neste slides

The Structure of the SRS Document

Essentials of Software Engineering”, Frank Tsui; Orlando Karam; Barbara Bernal, 3 ed., Jones & Bartlett Learning

A. System Overview (brief description of what the software system will do)
B. Technical Requirements (Functional requirement, Non-functional

requirements, User-interface specification, User task flow, Input/output and
other data specifications, Interface specifications to other systems)

C. Acceptance Criteria/Interaction Scenarios
D. Validation/Verification
E. Requirements Considerations (Assumption made about the software,

End users, Existing systems, Environment, Limitations)
F. Other Information...

Example 2

Appendix B contains lots of SRS
examples and detailed descriptions

SRD Example
• Introduction
• System Overview

– Introduction, Description of the system, Problem Description, Sketches of the
system

• Technical Requirements
– Functional requirement, Non-functional requirements, User-interface

specification, User task flow, Input/output and other data specifications, Interface
specifications to other systems

• Architecture
– The technical architecture of the system, system sketches, etc.

• Database
– Database modelling and detailed descriptions

• UML
– Use Case Diagrams, Sequence Diagrams, Class Diagrams

etc.

Software Requirements and Design (SRD) document

A mix of SRS and SDD

Many don't separate SRS and SDD
documents, but include everything
in a Requirements & Design
Document (SRD document).
In practice, requirements and
design are inseparable.

Example 3

SRD Example
• System Overview

– Introduction, Description of the system, Problem Description, Sketches of the
system

• Technical Requirements
– Functional requirement, Non-functional requirements, User-interface

specification, User task flow, Input/output and other data specifications, Interface
specifications to other systems

• Architecture
– The technical architecture of the system, system sketches, etc.

• Database
– Database modelling and detailed descriptions

• UML
– Use Case Diagrams, Sequence Diagrams, Class Diagrams

etc.

Software Requirements and Design (SRD) document

A mix of SRS and SDD

This Week!

Data & Cyber Security and GDPR
• GDPR - General Data Protection Regulation
• Handling Data Security and GDPR regulations (data protection

and privacy) needs to be a part of the Requirements, Design
and the final Solution.

• Data & Cyber Security Issues regarding your Software. What
can/should you do to protect your Software?

• Make sure to include these Topics within your SRD document
(and later in your Software Test Plan)
– What do you need to do in order to follow the GDPR regulations?
– How can you implement GDPR in your Software?
– How can you secure your Software against threats and

vulnerabilities?

Start creating the SRD document
for your Project

Use the Brainstorming Notes and SRS/SRD Examples as the foundation for your SRD document

Functional
Requirements

Non-Functional
Requirements

Functional and Non-Functional Requirements

• Statements of services the system should
provide, how the system should react to
particular inputs and how the system should
behave in particular situations.

• May state what the system should not do.

• Constraints on the services or functions
offered by the system such as timing
constraints, constraints on the
development process, standards, etc.

• Often apply to the system as a whole
rather than individual features or services.

System Sketches
• You need to make one or more system sketches at different

levels and for different users
• In Introduction Chapter

– A basic sketch with few technical details (System Overview
sketch)

– Should be understood by all kind of readers
• In Architecture Chapter

– One ore more sketches with more details (Technical
Architecture Sketch(es))

– For readers with more technical knowledge

Flow Chart Example
High-Level Flow Charts makes it easy to see how the system shall work

MS Visio or MS PowerPoint has built in features for creating Flow Charts

The Flow Charts should be understood by
non-programmers like the Stakeholders,
Project Managers and Customers

Note! Later we will create
more detailed diagrams
using UML Modelling

Flow Chart Symbols

Flow Charts

GUI Design Sketches
“Mockups”

You should also start creating some GUI sketches that you
can in the SDD/SRD document

Interface specifications

Module
1 Module

2

Module
3

?
How do different modules
interact with each other?
What is input and output from
the different Modules? ? ?

Check List
q The standards and guidelines available in the organization are followed in

the document.
q Will the requirements meet the customer’s need?
q Are all functional, nonfunctional and interface requirements captured for

the system?
q Is each requirement detailed enough and supported by necessary diagrams,

figures, data and use cases so that all the stakeholders get their necessary
input from the requirement?

q Are there requirements that conflict with each other?
q Are the requirements verifiable/testable?
q How much dependency does the requirement have on other requirements?
q Are the requirements validated and verified by all the stakeholders

(including all members of the Development Team)?
Reference: Dutt, Saikat, et. al.(2015). Software Engineering. Online Textbooks from O’Reilly For Higher Education (the
University has a subscription, so you can use it for free!)

Hans-Petter Halvorsen

https://www.halvorsen.blog

Project Plan
(Gantt Chart)

Table of Contents

See Next Slides for more details...

Project Plan (Gantt Chart)
• Create/Update the Gantt Chart using MS Project for your Software

Project. It should be included in the Software Development Plan
(SDP)

• Important Milestones, Deadlines and Meetings should be part of the
Project Plan (see the course schedule)
– Alpha Release (Sprint Iteration 1)
– Beta Release (Sprint Iteration 2)
– RC Release (Sprint Iteration 3)
– RTM Release (Sprint Iteration 4)

• Use the Software Requirements and Design document(s) as
background information when creating the Gantt Chart.

• Break Requirements down to Tasks and Subtasks and set who is
Responsible for each of the Tasks + Time Estimate

Project Task Estimation
How many hours does it take to do a specific Task?
• The Features and Requirements need to be broken

down into manageable Tasks by the team
• Each Tasks then needs to be Estimated (Hours)
• In the beginning of the project, we make roughly

estimates
• Then week by week we break it into more details and

are able to do more precise estimations
Note!! Each Task should have only one Responsible Person

Hans-Petter Halvorsen

https://www.halvorsen.blog

Azure DevOps

Table of Contents

See Next Slides for more details...

Azure DevOps
• Add your Releases (Alpha, Beta, RC, RTM) as Iterations

in the system. You should also add Areas and a
structured Folder Structure

• Get an overview of Work Items in Azure DevOps.
• Add your High-level Software Requirements and

Design Items as Work Items in Azure DevOps (Product
Backlog).

• Select some of them to be part of Sprint 1/Alpha
(Sprint Backlog). Make a rough estimate for each task.

Azure DevOps - New Project

Make sure to select
these settings!!!

https://dev.azure.com

https://dev.azure.com/

My Project

Azure DevOps in Visual Studio

51

Create a good Folder structure
for your Documents and the

Source Code

Folder Structure Example
• My Project

• Documents
• Process Documents
• Product Documents

• System Documents
• User Documents

• Code
• Desktop
• Web
• Server-side

• Database
• Tools
• Design
• Scripts

• Functions
• Scripts
• Stored Procedures
• Tables
• Triggers
• Views

Areas & Iterations (Sprints)

The different software modules
could be divided into different
Areas.
It is important to have a good
structure from the beginning!!

Create Iterations (in Scrum they use Sprints) for the
different releases, milestones (internal and external);
e.g., Alpha, Beta, RC, RTM

Create Product Backlog Items

What is the Product Backlog?
• A Term Used in Agile/Scrum
• The Product Backlog is an ordered list of

everything that might be needed in the
product -> Requirements

• It is the single source of requirements for any
changes to be made to the product.

Hans-Petter Halvorsen

https://www.halvorsen.blog

Coding and
Implementation

Table of Contents

See Next Slides for more details...

Coding and Implementation
• Start Planning the code structure of your Application(s)/

Module(s).
• Install necessary Software
• Get an overview of the software platforms, programming

languages you shall use, etc.
• Consider start creating the main shell for your application

(both code and GUI). (Test that you can communicate with a
Database, etc., DB Design starts next week)

• It is important that we always have a working software (so it
can be reviewed, tested, etc. during the whole project)! This
one of the basic feature of Scrum

ASP.NET Core
Web Page: https://halvorsen.blog/documents/programming/web/aspnet
Videos:
• ASP.NET Core – Introduction

https://youtu.be/zkOtiBcwo8s
• ASP.NET Core – Database Communication

https://youtu.be/0Ta3dQ3rxzs
• ASP.NET Core - Database CRUD Application

https://youtu.be/k5TCZDwTYcE
• ASP.NET Core – Class Library

https://youtu.be/emUiMd1zRrY
• ASP.NET Core – Charts

https://youtu.be/mksUls9fx-Q
• ASP.NET Core – Session Data

https://youtu.be/I0SQ_XAoFvA

https://halvorsen.blog/documents/programming/web/aspnet
https://youtu.be/zkOtiBcwo8s
https://youtu.be/0Ta3dQ3rxzs
https://youtu.be/k5TCZDwTYcE
https://youtu.be/emUiMd1zRrY
https://youtu.be/mksUls9fx-Q
https://youtu.be/I0SQ_XAoFvA

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

